Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Free Radic Biol Med ; 177: 189-200, 2021 12.
Article in English | MEDLINE | ID: covidwho-1466351

ABSTRACT

As hypoxia is a major driver for the pathophysiology of COVID-19, it is crucial to characterize the hypoxic response at the cellular and molecular levels. In order to augment drug repurposing with the identification of appropriate molecular targets, investigations on therapeutics preventing hypoxic cell damage is required. In this work, we propose a hypoxia model based on alveolar lung epithelial cells line using chemical inducer, CoCl2 that can be used for testing calcium channel blockers (CCBs). Since recent studies suggested that CCBs may reduce the infectivity of SARS-Cov-2, we specifically select FDA approved calcium channel blocker, nifedipine for the study. First, we examined hypoxia-induced cell morphology and found a significant increase in cytosolic calcium levels, mitochondrial calcium overload as well as ROS production in hypoxic A549 cells. Secondly, we demonstrate the protective behaviour of nifedipine for cells that are already subjected to hypoxia through measurement of cell viability as well as 4D imaging of cellular morphology and nuclear condensation. Thirdly, we show that the protective effect of nifedipine is achieved through the reduction of cytosolic calcium, mitochondrial calcium, and ROS generation. Overall, we outline a framework for quantitative analysis of mitochondrial calcium and ROS using 3D imaging in laser scanning confocal microscopy and the open-source image analysis platform ImageJ. The proposed pipeline was used to visualize mitochondrial calcium and ROS level in individual cells that provide an understanding of molecular targets. Our findings suggest that the therapeutic value of nifedipine may potentially be evaluated in the context of COVID-19 therapeutic trials.


Subject(s)
COVID-19 , Nifedipine , A549 Cells , Calcium , Calcium Channel Blockers/pharmacology , Calcium Channel Blockers/therapeutic use , Cell Death , Humans , Hypoxia/drug therapy , Nifedipine/pharmacology , SARS-CoV-2 , Superoxides
2.
Br J Clin Pharmacol ; 87(7): 2790-2806, 2021 07.
Article in English | MEDLINE | ID: covidwho-955646

ABSTRACT

AIMS: Hypertension is a common comorbidity of patients with COVID-19, SARS or HIV infection. Such patients are often concomitantly treated with antiviral and antihypertensive agents, including ritonavir and nifedipine. Since ritonavir is a strong inhibitor of CYP3A and nifedipine is mainly metabolized via CYP3A, the combination of ritonavir and nifedipine can potentially cause drug-drug interactions. This study provides guidance on nifedipine treatment during and after coadministration with ritonavir-containing regimens, using a physiologically based pharmacokinetic/pharmacodynamic (PBPK/PD) analysis. METHODS: The PBPK/PD models for 3 formations of nifedipine were developed based on the Simcyp nifedipine model and the models were verified using published data. The effects of ritonavir on nifedipine exposure and systolic blood pressure (SBP) were assessed for instant-release, sustained-release and controlled-release formulations in patients. Various nifedipine regimens were investigated when coadministered with or without ritonavir. RESULTS: PBPK/PD models for 3 formulations of nifedipine were successfully established. The predicted maximum concentration (Cmax ), area under plasma concentration-time curve (AUC), maximum reduction in SBP and area under effect-time curve were all within 0.5-2.0-fold of the observed data. Model simulations showed that the inhibitory effect of ritonavir on CYP3A4 increased the Cmax of nifedipine 17.92-48.85-fold and the AUC 63.30-84.01-fold at steady state and decreased the SBP by >40 mmHg. Thus, the combination of nifedipine and ritonavir could lead to severe hypotension. CONCLUSION: Ritonavir significantly affects the pharmacokinetics and antihypertensive effect of nifedipine. It is not recommended for patients to take nifedipine- and ritonavir-containing regimens simultaneously.


Subject(s)
COVID-19 Drug Treatment , HIV Infections , Antiviral Agents/therapeutic use , Area Under Curve , Drug Interactions , HIV Infections/drug therapy , Humans , Models, Biological , Nifedipine/pharmacology , Nifedipine/therapeutic use , Ritonavir/pharmacology , SARS-CoV-2
3.
Ann Am Thorac Soc ; 17(8): 918-921, 2020 08.
Article in English | MEDLINE | ID: covidwho-853546

ABSTRACT

Amid efforts to care for the large number of patients with coronavirus disease (COVID-19), there has been considerable speculation about whether the lung injury seen in these patients is different than acute respiratory distress syndrome from other causes. One idea that has garnered considerable attention, particularly on social media and in free open-access medicine, is the notion that lung injury due to COVID-19 is more similar to high-altitude pulmonary edema (HAPE). Drawing on this concept, it has also been proposed that treatments typically employed in the management of HAPE and other forms of acute altitude illness-pulmonary vasodilators and acetazolamide-should be considered for COVID-19. Despite some similarities in clinical features between the two entities, such as hypoxemia, radiographic opacities, and altered lung compliance, the pathophysiological mechanisms of HAPE and lung injury due to COVID-19 are fundamentally different, and the entities cannot be viewed as equivalent. Although of high utility in the management of HAPE and acute mountain sickness, systemically delivered pulmonary vasodilators and acetazolamide should not be used in the treatment of COVID-19, as they carry the risk of multiple adverse consequences, including worsened ventilation-perfusion matching, impaired carbon dioxide transport, systemic hypotension, and increased work of breathing.


Subject(s)
Altitude Sickness , Coronavirus Infections , Hypertension, Pulmonary , Pandemics , Pneumonia, Viral , Respiratory Distress Syndrome , Acetazolamide/pharmacology , Altitude Sickness/physiopathology , Altitude Sickness/therapy , Betacoronavirus/isolation & purification , COVID-19 , Carbonic Anhydrase Inhibitors/pharmacology , Coronavirus Infections/complications , Coronavirus Infections/drug therapy , Coronavirus Infections/physiopathology , Coronavirus Infections/therapy , Humans , Hypertension, Pulmonary/physiopathology , Hypertension, Pulmonary/therapy , Lung Injury/etiology , Lung Injury/physiopathology , Lung Injury/therapy , Nifedipine/pharmacology , Pneumonia, Viral/physiopathology , Pneumonia, Viral/therapy , Respiratory Distress Syndrome/etiology , Respiratory Distress Syndrome/physiopathology , Respiratory Distress Syndrome/therapy , SARS-CoV-2 , Vasodilator Agents/pharmacology , COVID-19 Drug Treatment
SELECTION OF CITATIONS
SEARCH DETAIL